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INTRODUCTION
Diseases have a great damaging effect on livestock production. Although parasitic infections, in particular with nematode infections, may 

not be the most important of diseases in ruminants with regard to animal mortalities, they have a high economic impact because they cause 
retarded growth, weight loss, disorder in fertility and loss in milk production [1].

Helminths are a diverse group of parasitic worms, encompassing nematodes, cestodes and trematodes, and constitute a major health 
problem for humans and animals in many parts of the world. Parasite helminthes are major causes of morbidity in animals and humans, 
infecting more than one billion people worldwide [2].

Parasitic nematodes burden on human health and nutrition by parasitizing livestock and cause an estimated 80 billion loss of worldwide 
crop production each year [3]. Besides the huge suffering, they cause tens of thousands of human deaths each year, reduce life expectancy and 
condemn millions to poverty. Despite the huge number of affected individuals, the market for anti-parasitic drugs for humans is not big enough 
to foster the development of anthelmintics because most infestations that occur are in developing countries that lack the ability to pay for the 
development of these drugs and lack of new developed technology [4]. With the rare exception of a vaccine for Taenia infection in pigs, no 
vaccines are available for these diseases and by far the major control measures in humans and animals rely on the use of anthelmintic drugs [5].

Anthelmintics drugs are currently the cornerstones of the control of veterinary helminth infections and probably remain so for the 
foreseeable future. The impressive efficacy, the standard being more than 95% worm reduction, the overall excellent tolerability, the broad 
spectrum of affected species and the low costs of the modern anthelmintics were the characteristics which led to great successes in the chemical 
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ABSTRACT
Parasitic helminthes cause serious infectious diseases in humans and live stocks. Control of these infections depends mostly on anthel-

mintics namely the Benzimidazoles (BZs), Levamisole (LEV) and other imidazothiazoles and the Macrocyclic Lactones (MLs) but resistance 
has developed against most of these broad-spectrum drugs in many parasite species. Therefore, the objectives of this paper are to give review 
on molecular mechanism and mechanism of resistance to anthelminthics and the factor that leading anthelminthics resistance and its possible 
management. Due to their difference I n mechanism of action and their mechanism of resistance of some anthelmintics is also different from 
each other. Drug resistance in general arises through drug accumulation, drug inactivation, alteration of target cells and metabolic alteration 
mechanism of the drugs. Some, of the most common mechanisms of drug resistance involve altered levels or altered drug specificities of ABC 
(ATP Binding Cassete) transporters. ABC transport protein called P-glycoprotein was the first active pump described for leading to multidrug 
resistance. Frequent usage of the same group of anthelmintic; use of anthelmintics in sub-optimal doses, prophylactic mass treatment of do-
mestic animals and frequent and continuous use of a single drug have contributed to the widespread development of anthelmintic resistance. 
Appropriate dosage, combination of the drugs, strict quarantines, refugia and pasture management are some that should be used to minimize 
the problem. Finally, recommendations are forwarded regarding the mechanisms that delaying the onset of drug resistance development.
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control of worms in livestock and companion animals during the past 
five decades [6]. Until recently, there have been three main chemical 
families of broad spectrum anthelmintics commercially available 
to treat parasitic infections, namely; the Benzimidazoles (BZS), 
Levamisole (LEV) and other imidazothiazoles and the Macrocyclic 
Lactones (MLs). These are also known, respectively, as the “white 
drenches”, “yellow drenches” and “clear drenches” [7]. The most 
recent discovery of the Amino-Acetonitrile Derivatives (AADs) as a 
novel drug class, apparently using a different mode of action to those 
described for the commercially available anthelmintics [8].

Unfortunately, serious and often dramatic levels of Anthelmintic 
Resistance (AR) are found, mainly in ruminant and horse gastro- 
intestinal nematodes and also in others such as liver fluke [6]. The 
situation is now further complicated by the lack of new mode of action 
drugs for nematode control in livestock for more than two decades. 
It is therefore one of the key issues to identify the mechanisms of 
AR, to develop improved tools, especially molecular tools, to detect 
and to monitor for AR and to seek means to overcome the resistance 
mechanisms in order to maintain the current status of helminthes 
control [9].

The objectives of this paper are:
• To review the molecular mechanism and mechanism of resistance 

of Anthelminthics.
• To highlight the factors which leads to parasite resistance and its 

management.

LITERATURE REVIEW
Brief history of anthelmintics

The era of modern anthelmintics started in the middle of the 
20th century with the introduction of phenothiazine and piperazine, 
products that are considered to be the first generation of the broad-
spectrum drugs. The second generation of truly broad spectrum 
anthelmintics were released in the 1960s and included the BZs; 
albendazole, fenbendazole, probenzimidazoles, imidazothiazoles 
and tetra-hydro-pyrimidines. Following the early success of the 
introduction of the BZs, extensive research programs were initiated 
during which successful structural modification resulted in the 
production of a series of BZs. BZs are effective against a broad range 
of parasites and also have wide safety margins, working at dosages of 
mg/kg bodyweight [10]. Most recently, the third generation of broad 
spectrum anthelmintics the macrocyclic lactones, emerged in the 
early nineteen eighties [11]. 

The ML, IVM was isolated from Streptomyces avermectinius in 
1974 and released onto the market in 1981 and is effective at doses 
of mg/kg bodyweight [12]. IVM was the first commercially available 
endectocide, being effective against helminthes, arachnids and 
insects [13]. IVM, the fermentation by-product of the saprophytic 
soil fungus Streptomyces avermitilis is the prototype member of the 
MLs class of anthelmintics and discovered in 1977, it was generally 
released in 1981, although the release was delayed until late 1987 in 
Australia [14].

A decade later, another broad spectrum anthelmintic, LEV was 
released onto the market. Like the BZs, the dose is also in the mg/kg 
bodyweight range. However, LEV acts on the host so care has to be 
taken with the dosage. Between 1960 and 1990, the pharmaceutical 
industry made major progress in developing deworming compounds 
with excellent broad-spectrum activity and safety [10].

Classification of Anthelmentics
Currently there are three broad spectrum classes of anthelmintic 

used to control helminthes in animals. These chemical classes are the 
BZs including albendazole, fenbendazole, mebendazole, oxfendazole, 
oxibendazole, ricobendazole, thiabendazole, as well as pro-
benzimidazoles such as febantel, netobimin. Imidazothiazole drugs 
are LEV, Morantel and pyrantel. MLs comprising two sub-classes, the 
avermectin such as IVM, abamectin, doramectin, eprinomectin and 
selamectin; and the milbemycins such as moxidectin [16].

Molecular Mechanism of Anthelmenthics
Benzimidazole: The anthelmintic efficacy of BZs is due to 

the ability of compromising the cytoskeleton through a selective 
interaction with β-tubulin factor [17]. Their mode of action appears 
to be mediated through binding to β-tubulin within the parasite, thus 
inhibiting the formation of microtubules that are central to the form 
and function of the parasite’s cells. This prevents various essential 
cellular processes such as the transport of secretory granules and 
enzymes in the cell cytoplasm, resulting in cell lysis, with knock-on 
detrimental effects on motility and feeding [18].

Microtubules play essential roles in eukaryotic cells such as 
intracellular trafficking, cellular absorption and secretion, anchoring 
of membrane receptors at specific locations, such as at synapses 
in nerve cells, mitosis, meiosis and cellular architecture [19]. 
Microtubules are dynamic polymers with a growing end (+ end) 
where additional ᾳ- ß-tubulin dimers can be added and a loss end 
(-end) where ᾳ-ß-tubulin dimers disassociate from the polymer. 
The process of adding tubulin dimers at one end and losing tubulin 
dimers from the other end of the microtubule is termed treadmilling. 
BZs act by binding to the growth end of microtubules preventing 
microtubules from adding new ß-tubulin dimers. As this occurs at the 
same time as microtubules are losing tubulin dimers from the other 
end, this results in the microtubules shortening and disappearing, 
disrupting essential cellular functions. It is therefore, perhaps, not 
surprising that ß-tubulin and microtubules, which are formed by 
polymerization of ᾳ- ß-tubulin dimers, are the targets for a large 
number of pharmaceuticals [20].

Typically drugs that target tubulin or microtubules either 
cause instability in microtubules or cause microtubules to become 
excessively stable. The exact dimensions of the BZs binding site have 
not been unequivocally determined [21].

However, BZ-susceptible nematodes have the amino acid 
phenylalanine at positions 167 and 200, as well as glutamate at 
position 198 of the ß-tubulin protein and this results in a high affinity 
binding site for BZs. In contrast, vertebrates commonly have Tyr 
at codon 200, and lack a high affinity BZ binding site and are not 
susceptible to significant toxicity from BZ drugs [22].

Imidazothiazoles: These anthelmintics are anthelmintic 
that target nicotinic acetylcholine receptors. LEV and tetramisole 
are imidazothiazoles that act by interfering with parasite nerve 
transmission causing muscular spasm and rapid expulsion. The 
cholinergic agonist at the nicotinic neuromuscular junctions that 
works by first opening and then blocking the acetylcholine receptor-
mediated cation channels. This causes a sustained neuromuscular 
depolarization, leading to a rapid tonic paralysis of the parasite’s 
somatic musculature, resulting in expulsion from the host [10]. The 
molecular mechanisms of LEV activity remain largely unknown in 
parasitic nematodes [23].

Macrocyclic lactones: The unique mode of action of MLs provides 
valuable efficacy against parasites resistant to other compounds 
[24]. The glutamate-gated chloride channels (GluCl) appear to be the 
most sensitive site of action of the ML anthelmintics. In nematodes, 
GABA receptors are found on muscle cells. Piperazine is a specific 
GABA receptor agonist and causes a flaccid paralysis [25]. They act 
by binding glutamate chloride channel causing paralysis and bind 
to GABA gated chloride channel which normally blocks reaction in 
some nerves causing excessive stimulation of central nerves system. 
The MLs activate chloride channels causing an inhibitory effect, 
irreversibly open, leading to a permanent hyper polarization of the 
cells and paralysis and death of parasite [26].

Molecular Mechanisms of Anthelmintics Resistance
Anthelmintic resistance is defined as the ability of parasites to 

survive a dose of drug that would normally kill them; it is heritable 
and nonreversible [27].

Drug resistance in general arises through one of four 
mechanisms

Drug accumulation: Drug accumulation may be lessened by 
diminished import, through alteration of pores which drugs enter the 
cell, or by increased export of the drug via an efflux pump [28].
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Drug inactivation: Mechanisms that inactivate drugs can 
diminish the amount of free drug available to bind to its intracellular 
target. More of the anti-metabolite 5-fluorouracil is normally 
catabolized by dihydro pyrimidine dehydrogenase, primarily in the 
liver [29]. The formation of conjugates between the thiol glutathione 
and platinum drugs such as cisplatin, carboplatin, and oxaliplatin is a 
key step in the inactivation of the drugs [30].

Alteration of target: Alterations in expression levels or mutation 
of a chemotherapeutic drug target can have a major impact on drug 
resistance. Microtubules in eukaryotic cells play essential roles, 
such as intracellular trafficking, cellular absorption and secretion. 
Drugs that target tubulin or microtubules either cause instability in 
microtubules or cause microtubules to become excessively stable [31].

Alteration of metabolic pathways: There could be a change in 
the metabolism of the drug causing not to be metabolized into its 
active form, or to be removed from its target sites [6].

Development of resistance to the sparse catalog of anthelmintic is 
an area of concern. The phenomena of drug resistance is essentially 
a change in gene frequency of worm populations produced by drug 
selection which renders the minimal effect of dosage previously used 
to kill the parasite. It is the ability of worms to survive the lethal effect 
of compounds known to have anthelmintic potential [32].

Resistance to benzimidazoles: The resistance mechanism to 
BZs anthelmintics has been shown to be associated with changes 
in ß-tubulin [33]. The sequences in the majority of organisms 
susceptible to BZs present a high conservation of phenylalanine and 
changes to a tyrosine that reduces the affinity of BZs β-tubulin. The 
changes of phenylalanine for a Tyr, methionine or glutamine were 
present themselves at position 200 in unsusceptible and resistant 
organisms [34]. Also, the position 167, very similar to 200, exhibits a 
high conservation of the amino acid phenylalanine in the susceptible 
group and the change to Tyr has been observed in some resistant 
organisms. The hydroxyl group on the Tyr allows it to function as 
a hydrogen bond donor/acceptor and increases the polarity and 
hydrophilicity of the binding site, characteristic unseen with the 
non-polar and hydrophobic phenylalanine. However, the presence of 
this Tyr at position 167 in the sequence changes may not be relevant 
in all β-tubulins. This could be an indication that amino acids at 
position 198 might play a major role in the binding of BZs toβ-tubulin 
[35]. The differences present at position 165 may only affect the 
stabilization of the BZs in the binding site. In one case a single amino 
acid substitution was identified as the cause of resistance. The most 
common single nucleotide polymorphism that causes BZ resistance is 
change at codon 200 in ß-tubulin [6].

The multiple sequence alignment showed that the main 
differences in susceptibility are presented at positions 165, 167, 
198 and 200 of the β-tubulin sequences. Molecular modeling studies 
corroborated the binding mode of the BZs in the β-tubulin binding 
site and were also in agreement with β-tubulin susceptibility reports 
based on the treatment with BZs. The mutated and unsusceptible 
β-tubulin models suggest that the possible cause of resistance 
to BZs is mainly due to amino acid modification at position 198 
because of the loss of hydrogen bonding interactions. On the other 
hand, the substitution of phenylalanine for Tyr at positions 167 
and 200 suggests that the inhibitory mechanism may take place 
during the opening of the binding site or during the internalization 
of the ligand. The mechanism by which the principal single point 
mutations Phenylalanine167Tyr, Glutamate198Alanine and 
Phenylalanine200Tyr could lead to resistance to BZs. The binding 
site pocket of the four structures consists of several highly conserved 
hydrophobic amino acids with a few hydrophilic residues in which 
the main differences are observed at positions165, 167, 198 and 
200. The different amino acids at these positions could be of great 
importance to determine the possible cause of susceptibility and 
resistance to BZs between organisms [36].

Resistance to Imidazothiazoles: The molecular mechanisms of 
LEV activity and expression of resistance remain largely unknown 
in parasitic. In contrast, genetic screens for mutants that survive 

exposure to LEV in the free-living nematode Caenorhabditis elegans 
(C. elegans) have led to the identification of five genes (unc-38, unc-
63, unc-29, lev-1 and lev-8) that encode a LEV sensitive acetylcholine 
receptor (L-AChR). Loss of these genes leads to LEV resistance [23].

The natural ligand typically binds at the interface between an 
alpha-type and its adjacent subunit, causing a change in physical 
structure of the channel, opening a gate that allows ion flow into, 
or out of, the cell [37]. Numerous genes encode cation-channels in 
C. elegans; they can be grouped into 5 clusters named after specific 
subunits: acr-16, acr-8, unc-38, unc-29 and deg-3 and in addition, 
many subunits whose function is not clearly defined [38].

The candidate gene strategy developed revealed an unexpectedly 
high diversity of L-AChR subunits specific to the trichostrongylide 
parasites that are a principal target for the drug LEV. [39] reviewed 
the pharmacology of LEV resistance, where it is caused either by a 
reduction of the number of nicotinic acetyl cholinesterase receptors 
or by a decreased affinity of these receptors for the drug. Although 
polymorphism at the amino acid level could be demonstrated, there 
is no evidence that alleles at this locus were involved in selection for 
resistance to LEV [40]

The cholinergic anthelmintics act on nematode nicotinic 
acetylcholine receptors located on somatic muscle cells. The 
receptors of several genes are subject to modulation of several other 
proteins. Mutations altering these proteins could alter sensitivity 
to the cholinergic anthelmintics and thus lead to resistance. The 
possibility of resistance to the cholinergic anthelmintics is not 
necessarily the result of a single mutation but may well be polygenic 
in nature. Additionally, the mutations resulting in resistance may 
vary between different species or between resistant isolates of the 
same species [41].

Resistance mechanisms to the macrocyclic lactones
IVM and other MLs affect gastro-intestinal by causing paralysis via 

opening chloride channels, which are thought to be associated with 
α-subunits of glutamate-gated channels located on muscles of the 
pharynx and possibly the somatic musculature [42] also compared 
IVM-resistant helminthes, susceptible H. contortus populations and 
found that resistance is due to an alteration in the binding of IVM 
to glutamate gated chloride channel receptors. Phospho-glycoprotein 
(Pgp) is also involved in resistance to IVM in helminth species [43].

ABC (ATP binding cassette) transporters of the subfamily B, the 
so-called Pgps have been frequently implicated in IVM resistance 
and are a major cause of multi-drug resistance in protozoa and 
helminthes. The Pgp inhibitor verapamil dramatically enhanced 
susceptibility of the cattle parasitic nematode C. oncophora to 
ivermectin. Moreover, verapamil completely restored susceptibility 
to IVM in a resistant isolate resulting in virtually identical dose-
response curves of susceptible and resistant isolates in the presence 
of verapamil. Further characterization of the molecular mechanisms 
resulting in Pgp-mediated IVM resistance is still hampered by the 
lack of molecular and biochemical information for Pgps of parasitic 
nematodes. The Pgp sequences contribute important data required 
to systematically screen resistant C. oncophora isolates for up- or 
down-regulation of Pgps and for the detection of single nucleotide 
polymorphisms in Pgps to detect selection of specific Pgp alleles by 
anthelmintics as early as possible [43].

Changes in the sequence and expression of these Ligand-gated 
chloride channels can cause resistance to the ML, such as C. elegans. 
Mutations in multiple GluCl subunit genes are required for high-level 
ML resistance in C. elegans, and this can be influenced by additional 
mutations in gap junction and genes. Parasitic nematodes have a 
different complement of channel subunit genes from C. elegans, but a 
few genes, including avr-14, are widely present. A polymorphism in an 
avr-14 orthologue, which makes the subunit less sensitive to IVM and 
glutamate, has been identified in C. oncophora and polymorphisms 
in several subunits have been reported from resistant isolates of 
H. contortus. This has led to suggestions that ML resistance may 
be polygenic. There is no specific resistance associated sequence 
changes have yet been identified. The avr-14 of C. oncophora showed 
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a Leu256Phenylalanine polymorphism change between a resistant 
and a susceptible isolate, which causes a reduction in sensitivity to 
IVM. But this polymorphism has not been reported so far in other 
isolates of C. oncophora or other parasite species [44].

Cross resistance, active transport and its role in 
anthelmintic resistance

Cross-resistance occurs through drug receptor-independent 
mechanisms and arises because the mechanism of resistance to 
several drugs is the same, through identical genetic mutations [46]. 
In any case, cross-resistance involving two mechanisms.

Specific mechanism: Specific resistance mechanisms as those 
that confer resistance to only one class of drugs, with little or no 
effect on other classes. These forms of resistance might be expected 
to be caused by changes in the drug target site or in specific activating 
enzymes, rather than by an increase in the expression of detoxifying 
enzymes, like P450, or efflux pumps, like the ABC pumps in the plasma 
membrane. The generation of drug-resistant strains of C. elegans 
and the genetic and molecular characterization of the mutations 
responsible for this resistance was an extremely productive and 
informative strategy for studying the mechanisms of action of all the 
current anthelmintic classes [46].

Nonspecific mechanisms: Mechanisms that alter drug 
concentration are sometimes referred to as nonspecific mechanisms 
because they may affect pharmaceuticals from different chemical 
and mode of action classes. Nonspecific resistance mechanisms can 
include drug transport mechanisms with relatively low specificity, 
usually involving ABC transport proteins, or drug metabolism such as 
oxidation by cytochrome P450. There is little evidence that oxidative 
drug metabolism is very active in parasitic nematodes and there is no 
evidence this drug metabolism plays a significant role in resistance 
to existing anthelmintic drugs [47]. Mechanism acquired through 
direct exposure to one drug and may generate resistance to one or 

more other drugs to which the pathogen has not been exposed. Non-
receptor mechanisms of resistance include altered levels of enzymes 
involved in drug metabolism or transport mechanisms which 
modulate subsequently the concentration of the drug that reaches 
the effect or site on a receptor, such as:
(i) increased efflux of the drug from cells containing the receptors
(ii) reduced uptake
(iii) increased drug metabolism and inactivation or
(iv) reduced activation of drugs [49]. 

However, drug efflux mechanisms may play a significant role 
in resistance to some anthelmintics. Initial evidence that IVM 
is an excellent substrate for efflux mechanisms by mammalian 
P-glycoprotein. Some of the most common mechanisms of drug 
resistance involve altered levels or altered drug specificities of ABC 
transporters, such as P-glycoprotein [48].

ABC transporters belong to an evolutionarily well-conserved 
family of membrane proteins whose main function is the ATP-
dependent transport of a number of structurally unrelated 
endogenous and exogenous compounds including a large range of 
drugs. Among these transporters, the Multidrug Resistance (MDR) 
BC transport protein called P-glycoprotein was the first active pump 
described for over expression in tumor cells, leading to MDR [49].

Source: [49],
(A) Constitutive expression of MDR transporters on cell membranes of 

target organism: basal efflux of drugs (example with macrocyclic 
lactones).

(B) Over expression of MDR transporters in response to drug 
pressure: increased efflux of drug and development of resistance.

(C) Inhibition of MDR-mediated efflux with MDR reversal agents: 
enhancement of drug concentration and toxicity into the target 
cells.

Anthelmintic Site of action Gene Carrying Molecular change

Benzimidazole β-tubulin  ben-1 (isotype-I)

F200y

E198A

F167Y

Levamisole Body muscle nAChR
Unc-38

Unc-29

Decreased expression

Macrocyclic

Lactones

GluCl channel

Transporter

Avr-14

Pgp

L256F

Increased expression

Table 1: Summary of genes and molecular changes that are associated with resistance. Source [45]

Figure 1: Multidrug transporter mediated efflux of drug, its contribution to the development of resistance and mechanism of reversion
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Factors leading to anthelmintic resistance
The development of anthelmintic resistance has occurred 

relatively rapid. It is facilitated by the large population size and 
inherent high genetic variability that is typical among nematode 
parasites and compounded by the movement of their host species 
[50]. 

Modern anthelmintics are used at an efficiency of around 99% 
against susceptible strains of helminthes [26]. However, a small 
number of worms still survive due to variety of reasons. The rate of 
resistance is influenced by many reasons like genetic, biological or 
operational, the most important of which are operational factors, 
which can be manipulated by farmers and form the basis of resistance 
in management programs [51].

Treatment frequency: One of the major factors that predispose 
to anthelmintic resistance is frequent use of the same group of 
anthelmintic regularly [51]. The frequency of treatment determines 
how rapidly resistance will develop. It has been observed that 
frequent usage of the same group of anthelmintic may result in the 
development of AR [52]. AR in H. contortus has been reported in some 
humid tropical areas where 10 to 15 treatments per year were used 
to control this parasite in small ruminants [53].

Anthelmintics under dosing: Under dosing is generally 
considered as a major cause for anthelmintic resistance, because 
sub-therapeutic doses allow survival of heterozygous resistance 
worms [54]. Variation in bioavailability of many drugs in different 
host species also promotes anthelmintic resistance. The presence of 
generic products of substandard quality, repacked and reformulated 
or expired drug products are most widely distributed in pharmacies 
and veterinary clinics, where use of such drugs promotes development 
of AR [51].

Under dosing is contributes to the selection of resistant or tolerant 
strains [55]. Moreover, variation in bioavailability in different host 
species also is crucial for making a decision about correct dose [56]. 
Most of the currently applied anthelmintics are in fact sub curative in 
at least part of the population [57].

Mass treatment: Prophylactic mass treatments of domestic 
animals have contributed to the widespread development of AR in 
helminthes. This approach would ensure that the progeny of the 
worms surviving treatment will not consist only of resistant worms. 
Leaving a part of the group untreated, especially the members 
carrying the lowest worm burdens should not necessarily reduce 
the overall impact of the treatment. In worm control in livestock, 
regular moving of the flocks to clean pastures after mass treatment 
and planning to administer treatment in the dry seasons is a common 
practice to reduce rapid reinfection. However, these actions result 
in the next helminth generation that consists almost completely of 
worms that survived therapy and, therefore, might contribute to the 
development of AR [54]. A parasite resistant to one anthelmintic in 
a drug class will usually be resistant to all anthelmintics within the 
class, this is known as side resistance [58].

Single drug regimens: Frequent and continuous use of a single 
drug leads to the development of resistance. For example, a single 
drug, which is usually very effective in the first years, is continuously 
used until it no longer works [59]. Frequent use of single drugs 
without alternation with other drugs has also been reported as the 
reason for the fast development of resistance [60].

Transmission of resistance: Studies examining changes in the 
prevalence of AR have suggested that initially “on farm” selection 
is the crucial process. However, as resistant parasite populations 
become more common, animal movement is one of the key factors 
that account for the rapid changes that occur during the last stages of 
the developmental process of the parasite [61].

Possible management of Anthelmenthics resistance
Refugia: Refugia describe the proportion of a parasite population 

that is not exposed to a particular drug, thereby escaping selection 
for resistance. Most parasitologists now consider levels of refugia 
as the single most important factor contributing to selection for 

anthelmintic resistant parasites [62].
Worms in refugia provide a pool of genes susceptible to 

anthelmintics, thus diluting the frequency of resistant genes. As 
the relative size of the refugia increases, the rate of evolution 
toward resistance decreases. For many years, parasitologists and 
veterinarians have recommended that all animals should be treated 
with an anthelmintic at the same time. However, this strategy has 
turned out to be unsustainable, and parasitologists now favor a 
selective approach where only animals in need of treatment actually 
receive medication [63]. 

Treatment of animals with low worm burdens does little to 
control parasites, but removes an important source of refugia, 
thereby accelerating the evolution of resistance. Climatic conditions 
have fundamental effects on the numbers in refugia. Few free-living 
stages survive in arid climates, so the pasture refugium is small [64].

Adoption of strict quarantine measures: Effective management 
strategies to prevent development of anthelmintic resistance are 
worthless if producers purchase resistant worms residing in breeding 
stock. Therefore, strict quarantine procedures should be instituted 
for all new additions. This practice is more important, as in recent 
years several farms with high-quality breeding stock dispersed herds 
[65].

Combination drug strategy: Treating simultaneously with two 
drugs from different anthelmintic classes is one method of preventing 
the development of AR. This strategy is used when the drugs are first 
introduced, before there is any selection for resistance to either drug, 
appreciable resistance will not develop for over 20 years. However, 
once resistance alleles accumulate in worm populations, this strategy 
will probably not be successful. Compared with individual drug 
effects, anthelmintics of different chemical classes administered 
together induce a synergistic effect, resulting in clinically relevant 
increases in the efficacy of treatment. This synergistic effect is most 
pronounced when the level of resistance is low. Once high-level 
resistance to both drugs is present, the synergistic effect is unlikely 
to produce acceptable levels of efficacy [66]. 

Genetic improvement: There is considerable evidence that part 
of the variation in resistance to helminths infection is under genetic 
control. Resistance is most likely based on inheritance of genes that 
play a principal role in expression of host immunity. Several breeds 
around the globe are known to be relatively resistant to infection 
[67].

Although such a strategy may be acceptable to some, selection 
for resistant animals within a breed also is a viable option. Within a 
breed, animals become more resistant to infection with age as their 
immune system becomes more competent to combat infection. Some 
animals within such a population do not respond well and remain 
susceptible to disease; therefore, the majority of the worm population 
resides in a minority of the animal population [68].

Nutrition: The strongest link between nutrition and parasitism 
has been illustrated between protein intake and resistance to 
gastrointestinal nematode infection [69]. Immunity is closely related 
to protein repletion. Supplementation with phosphorus has been 
shown to prevent worm establishment. Cobalt deficiency also has 
been associated with reduced immunity [70].

Pasture management: Reducing exposure of susceptible hosts 
in control programs is paramount. The goal of pasture management 
is to provide safe pastures for grazing. Stocking rate is an important 
consideration in parasite control as it affects exposure to infective 
larvae and contamination of the pasture [71].

CONCLUSION AND RECOMMENDATION
Ability to detect molecular mechanism of anthelmintic resistance 

(AR) is quite limited. The reason behind this is complexity of molecular 
mechanism of the resistance. Currently molecular mechanism of AR 
has not been investigated widely in most developing countries due 
to absence and/or lack of technologies. Mechanism of resistance is 
difficult to study, but nowadays some people used C. elegan nematode 
for further investigation of mechanism AR in some anthelmintics. 
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Changes in gene expression are associated with resistance to several 
different classes of anthelmintic. It is therefore one of the key issues 
to identify the mechanisms of anthelmintic resistance, to develop 
improved tools, especially molecular tools, to detect and to monitor 
for AR and to seek means to overcome the resistance mechanisms in 
order to maintain the current status of helminthes control.
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