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INTRODUCTION
In optics, diffraction renders a blurred Airy disk image for a point object and thus creates a resolution limit to an imaging instrument [1]. 

Over the past decades, tremendous progress has been made to improve the resolutions of optical images. Hell et al. used a depletion laser beam 
to squeeze the non-depleted excitation fluorescent spot to a tiny point and achieved a 35 nm resolution of molecule images [2,3]. Zhuang et al. 
reconstructed 20 nm-resolution images of individual photo-switchable fluorescent molecules that are turned on and off by excitation light of 
different colors [12]. Betzig et al. used photo-activated localization microscopy to image intracellular proteins at a nanometer resolution [5]. 
Pendry proposed to use survived evanesce waves in negative-index media to make a perfect image [6], which was realized experimentally by 
Zhang et al., [7]. Yablonovitch et al. developed a 3D tapered metal-insulator-metal nano-gaped device that delivers background-free near-field 
images with a deep sub-wavelength resolution. 

While these landmark advances are impressive in beating diffraction in image optics, overcoming the diffraction spreading of a laser 
beam is rarely studied. Light from a sub-wavelength aperture usually diffracts in all directions, which makes a nano-sized laser beam virtually 
impossible [9]. Townes et al. first discussed the possible suppression of rapid diffraction- spreading of a laser beam in nonlinear dielectric 
media by an intense laser [10]. Lezec et al. created an almost-directional light beam out of metallic films of a bull’s eye structure, whose 
practical application is limited by the complicated fabrication of periodic grooves [13]. Noticing the importance of beating diffraction in science 
[1-8], here we propose an approach to make a nano- ized laser beam for technological applications

TRANSFER MATRIX MODELLING
We use a planar metal-dielectric tri-layer film to absorb laser light as SPPs at a conductor/dielectric interface [14,15] and add another top 

dielectric layer to reduce SPPs to free- space optical waves. This conversion does allow photons traveling directionally without diffraction [16].
We calculate the intensity of light reflected by and transmitted through this coupling structure [17-21] with a transfer-matrix method. 

The transfer-matrix method is briefly summarized as follows. Suppose the coupling structures are composed of optically isotropic and 
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ABSTRACT
Whereas exciting progress has been made to beat diffraction in optical spectroscopy [1-8], making a nano-sized laser beam remains chal-

lenging due to diffraction spread [9,10]. Using Bethe’s expression for the optical transmission coefficient of a circular hole in a perfect con-
ductor screen of zero thickness [9,11]. T=1024π3a6/27λ4, we found that the transmission of light with a wavelength λ=800 nm through such a 
circular hole of a radius of 1 nm is about ~2.3 × 10-6. So a decent nanosized laser beam for miniaturization of optical elements is not available. 
Here we show that coupling Surface Plasmon-Polaritons (SPPs) to appropriate dielectric material can result in fundamentally diffraction-free 
down-sized, especially nano-sized laser beams. For example, the composite structure Si3N4/Au(44.5nm)/SiO2 (456nm)/(SiO2, Si3N4, SiO2) can 
achieve a nano-sized laser beam of about half the incoming light intensity. This approach, by transforming the macroscopic laser beams into 
multiple nano-sized laser beams, holds promise for ultrafast laser imprinting of nanopores for DNA sequencing and other miniature photonic 
devices in optical signal processing industries.

KEYWORDS
Optical spectroscopy, Nano-sized Laser Beams, DNA sequencing



J Adv Mater Sci Innov Volume: 1.1

Journal Home: https://scienceworldpublishing.org/journals/journal-of-advanced-material-science-and-innovations/JAMSI

2/4

homogeneous N planar layers. Each layer i has a thickness di. Both 
the width of the first layer and that of the last layer are assumed to be 
infinite. The dielectric properties of each layer i are characterized by 
its complex dielectric functions εi(ω).

We use the dielectric functions calculated from the refractive index 
of materials (https://www.filmetrics.com/refractive-index-database). 
A p-polarized monochromatic plane wave with wavelength λ0 is 
incident on the stack from layer 1 through layer N, making an arbitrary 
angle of incidence θ1 with respect to the surface normal of the first 
interface. We describe the electric field in layer i as a superposition of 
the reflected and transmitted plane waves. For example, for a single 
ideal interface at the O-xy plane, the electric field below and above this 
interface is written as , 0 1 1( ) ( ) ( )' 1 1i

x z x zx z e k x k z wt ei k x k z wt< = + − + − −E E E  
and  , 0 2 2( ) ( ) ( )' 2 2i i

x z x zE x z e k x k z wt e k x k z wt> = + − + − −E E . Here the wave-
vector for the incident plane wave is k1x i +k1z k , the wave-vector 
for the reflected plane wave is k1x i +k1z k in layer 1, and so on for 
the wave-vectors in layer 2. The x-components of all the wave-vectors 
are equal, i.e., 1 2 1 1... 2  /x x Nxk k k n sinπ θ λ= = =



. The z-components 
of the wave-vectors can be written as 2

1 12 sin /iz ik π ε ε θ λ= −


. 
The transformation of the incident and reflected fields across each 
interface i of two neighboring i-th and (i+1)-th layers are related to 
each other by an interface transfer matrix T(i),  i.e.,
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Similarly, when the optical fields travel in a single j-th layer of 
thickness dj, the field amplitudes in the upper- and down-sides of this 
layer are related by a propagation transfer matrix T(dj), i.e.
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For a multilayer film, the electric fields at the first interface are 
related to those at the last interface by an overall T-matrix, which is 
the successive matrix products of the propagation transfer matrix 
and interface transfer matrix, i.e.,

1 1 1 2 1 1

1 1 1 2 1 1

( ) ( 0)
' ( ) ' ( 0)
N x N N N x
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N x N N N x
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Where,

1 3 2( 1) ( ) (3) ( ) (2) ( ) (1)total NT T N T d T T d T T d T−= − ⋅⋅⋅ .  (3)
If we set the incident and reflected electric field from the bottom-

most layer as one and r = E’1 / E1 and the transmitted and reflected 
field from the top-most layer as t = EN/E1 and 0, the matrix relation 
can then be expressed as:
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=     

     
      (4)

Thus the transmission and reflection coefficients of the final layer 
are given by

11 12 21 22 1( / ) cos / cos Nt T T T T θ θ= −   (5)

and

21 22/r T T= −
    (6)

Finally, the reflectance R, the transmittance T, and the absorbance 
A are then given by R = | r2 |,

2cosRe
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REFLECTANCE AND TRANSMITTANCE OF METAL-
DIELECTRIC FILMS

We use this transfer matrix method to design our material 
structure. At first, we use a tri- layered film Si3N4/Au/SiO2 stack 
to absorb laser light into SPPs with Kretschmann prism coupling 
configuration [22]. As shown in Figure 1, the 800 nm wavelength 
laser light with an angle of incidence is 49.1o is completely trapped at 
the interface of this film if the thickness of the smooth gold film [23] 
is about 44.5 nm.

Figure 1: The reflectance, transmittance, and absorbance of 
the film Si3N4/Au(44.5nm)/SiO2 stack vs the angle of incidence. The 
p-polarized monochromatic light with wavelength 800 nm casts 
on the film. The surface Plasmon resonance angle is found to be 
θSPP=49.1o. 

We then put another Si3N4 layer onto the Si3N4/Au(44.5nm)/
SiO2 film with varying SiO2 thickness. As shown in Figure 2, the 
transmittance of the film Si3N4/Au(44.5nm)/SiO2/Si3N4 is 0~45.8% 
when the same light incident on it with the same angle of incidence. 
SPPs can couple efficiently with Si3N4 with a maximum transmittance 
of 45.8% in the sample Si3N4/Au(44.5nm)/SiO2(456nm)/Si3N4.

Figure 2: The reflectance, transmittance, and absorbance 
of Si3N4/Au(44.5nm)/SiO2/Si3N4 film vs SiO2 thickness. When 
p-polarized wavelength 800 nm light with casts on the sample 
Si3N4/Au(44.5nm)/SiO2(456nm)/Si3N4 with an angle of incidence is 
θSPP=49.1o, the maximum transmittance is about 45.8%. 

To understand the physics for this optical transmission, we also 
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calculate the magnetic field in the i-th layer of the sample Si3N4/
Au(44.5nm)/SiO2(456nm)/Si3N4, which takes the following form.

( ' ) /yi i ix ix izH E E kωε= −    (9)

Here the x-components of the electric fields, including both the 
incident electric fields and the reflected electric fields in each layer, 
are also calculated by the transfer matrix formulation (3-6). As 
shown in Figure 3, the magnetic field amplitude reaches a maximum 
at the Au/SiO2 interface and decays exponentially in the SiO2 layer 
as plasma-polaritons. When entering the SiO2/Si3N4 interface, the 
magnetic field stops declining and starts to travel through the Si3N4 
layer as an un- attenuated oscillation. The SiO2/ Si3N4 interface 
acts as an excitation source for this un- attenuated oscillation. This 
interface behaves just like shaking one end of a rope to generate a 
transverse string wave in the entire rope. This emission of light is self-
directional, i.e., is diffraction-free, and is quite different from surface 
plasmon-coupled emission [24], or direction- selective emission in 
the metal-dielectric-metal structure [25] or light-beaming caused 
by the interaction of SPPs with surface grooves in the metal [13], or 
perfect transmission of light through pinholes in a Fabry-Perot cavity 
[26]. The top dielectric layer acts as a vent for SPP photons to emit, 
and the more surface area of the dielectric, the more free photons 
one can get.

Figure 4: The light is partially turned on and off in the composite 
structure Si3N4/Au(44.5nm)/ SiO2(456nm)/ (SiO2, Si3N4, SiO2). The 
beam size of this dielectric-coupled SPP emission depends solely on 
the contact area of the top dielectric coupling layer Si3N4, which turns 
the light on (hence it stores a bit “1”)

CONCLUSIONS
In summary, we performed a systematic study of the optical 

properties of SPP nanostructures coupled with dielectric materials. 
While this study has not been experimentally realized, there is no 
theoretical obstacle to build a diffraction-free laser beam by coupling 
SPP nanostructures with appropriate dielectric material. The capping 
layer alignment shows significant flexibility in building structures 
of interest in a variety of applications. The generation of multiple 
beams from a single laser source could be used to design new optical 
storage for fast batch-bit access in big-data industries, or to develop 
new 3D-printing technology to fabricate nano-porous membranes 
or nanofibers for efficient industrial-scale hydrogen generation [28] 
and CO2 electrolysis for global dioxide emission reduction [29-31]. 
The merit of this diffraction suppression is that a decent nano-sized 
laser beam could be made possible. A continuous effort aiming at 
improving the optical field [32,33] of this sub-wavelength laser beam 
for the fabrication of a solid-state nanopore for DNA sequencing [34-
37] is also possible.
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