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BACKGROUND
GBM is known for its aggressive progression, weak response to cancer therapy and, consequently, bad prognosis [1,2]. A poor 5-year overall 

survival rate of less than 10% points to the need for new chemotherapeutic approaches. The current standard care of GBM includes maximal 
surgical resection, followed by radiation and adjuvant chemotherapy with the methylating agent temozolomide [2-4]. Chloroethylating 
nitrosoureas (chloronitrosoureas, including lomustine, nimustine, carmustine, and fotemustine) are also used as first- and second-line 
chemotherapeutics for the treatment of GBM and other brain tumors or metastases of various origins [5,6]. 

Temozolomide and chloronitrosoureas induce pre-toxic DNA lesions (adducts) which lead to cancer cell death [6]. Temozolomide modifies 
DNA bases by alkylation reactions on N- or O-atoms. One of the most critical lesions is the minor adduct O6-methylaguanine (O6-MeG), because 
of its potent genotoxic and cytotoxic effects. It can be repaired in a one-step reaction by the O6-methylguanine-DNA Methyltransferase (MGMT). 
MGMT is the first line of defence against O6-alkylation damage [7]. In cells lacking MGMT activity, backup mechanisms operate to repair or 
remove the damaged bases, such as the Mismatch Repair (MMR) system. 

During DNA replication in S phase, DNA polymerases mismatch O6-MeG with thymine. The MMR system recognizes this and removes the 
thymidine. However, this repair is futile, since the mispairing is repeated [8]. These unsuccessful attempts of MMR to repair the mismatches 
lead to an accumulation of long-lasting single-stranded DNA segments which are further transferred into critical DNA double-strand breaks 
(DSB) in the S-phase of the post-treatment cell cycle [9]. 

Similar to methylating agents, the chloronitrosoureas induce a broad spectrum of DNA adducts. Among these, O6-chloroethylguanine 
(O6-ClEG) is suggested to be the main cytotoxic lesion. This adduct is unstable and undergoes intramolecular rearrangement that lead to 
an intermediate, N1-O6-ethenoguanine. This is converted during a second intramolecular rearrangement to a N1-guanine-N3-cytosine inter-
strand cross-link (ICL) [6]. Similar to O6-MeG, O6-ClEG is a substrate for MGMT. Replicating cells lacking MGMT activity develop a complex 
backup mechanism for ICL repair that leads to the generation of DSBs during the removal of ICL by Nucleotide Excision Repair (NER) proteins 
[6,10].

The processing of both O6-MeG and O6-ClEG-derived ICLs generate DSBs, which represent lethal secondary DNA damage. These DSBs are 
substrates for DNA repair by the non-homologous end-joining (NHEJ) and homologous recombination (HR) [11]. The canonical NHEJ (C-NHEJ), 
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ABSTRACT
Glioblastoma Multiforme (GBM) is the most prevalent primary malignant brain tumor in adults. Despite improvements in surgery, irradi-

ation, and chemotherapeutic treatments, GBM remains a clinically unresolved problem. We sum up how GBM is currently treated, with a focus 
on temozolomide (TMZ) and chloronitrosoureas. We condense how such agents evoke lethal DNA damage in transformed cells and how these 
counteract such mechanisms. A better knowledge of such pathways may pave the way for improved therapies. Therefore, we recapitulate how 
inhibitors of the DNA repair factors PARP and RAD51 as well as epigenetic modulators of the histone deacetylase (HDAC) family might be useful 
in combination with established methylating and alkylating agents against GBM.

KEYWORDS
Alkylating agents, DNA damage, HDAC, Glioblastoma, PARP, RAD51



Sci World J Cancer Sci Ther Volume: 1.1

Journal Home: https://scienceworldpublishing.org/journals/science-world-journal-of-cancer-science-and-therapy/SWJCST

2/4

with its key proteins KU70/KU80 and the catalytic subunit of the DNA 
damage-sensing checkpoint kinase DNA protein kinase (DNA-PK), is 
functional throughout the cell cycle. NHEJ is most important in the 
G1 phase, where HR is lacking due to a lack of a homologous DNA 
strand. However, C-NHEJ plays only a minor role in the repair of O6-
MeG and O6-ClEG induced DNA replication-dependent DSBs [12,13]. 
In addition to C-NHEJ, another DSB repair pathway is described, the 
backup NHEJ (B-NHEJ). It depends on the enzymatic activities of 
PARP1 (poly(ADP-ribose)-polymerase) 1, ligase III, and X-ray Repair 
Cross-Complementing Protein 1 (XRCC1) [14]. PARP1 recognizes 
DSBs, whereupon it modifies itself and proteins in the surrounding 
chromatin. During this process termed PARylation, PARP1 adds Poly-
ADP-Ribose (PAR) chains to histones and non-histone proteins [15]. 
The presence of the PAR binding motif PBM in both B-NHEJ proteins 
like XRCC1 and ligase III, or C-NHEJ proteins like Ku70 and DNA-PK 
indicates that PARP activity is required for their recruitment to DSBs 
[16].

The second main DNA DSB repair pathway, HR, is operative in the 
late S and G2 phases of the cell cycle. HR involves strand invasion onto 
the sister chromatid template, followed by reparative DNA synthesis, 
and resolution of Holiday junctions [17]. Usage of an undamaged 
template ensures error-free DSB repair. Due to its recombinase 
activity RAD51 is the key HR protein. RAD51 overexpression has 
been observed by immunohistochemistry in various cancers [18-23], 
including gliomas [24]. In most studies, RAD51 overexpression was 
associated with poor prognosis for the patients. Owing to its important 
role in the repair of temozolomide- and chloronitrosoureas-induced 
DNA damage, HR is considered as an emerging target for glioblastoma 
therapy [25-27].

A recent study with a mouse orthotopic implantation model of 
human patient-derived glioblastoma cells corroborated that, besides 
MGMT expression, the MMR, NER, and HR contribute to temozolomide 
resistance. Importantly, this determines the survival of tumor-
bearing mice [28]. Especially gliomas without MGMT activity rely 
on HR as major DNA DSB repair pathway. In light of these findings, 
it is relevant that high throughput screening revealed several small 
molecules as selective inhibitors of RAD51 [29-31]. Remarkably, such 
agents are able to suppress the growth of breast cancer cells [32,33] 
and glioblastoma cells [34] in vitro  and in vivo (Figure 1).

Whereas HR has been so far targeted only in preclinical 
investigations, PARP enzymes are well-established targets in 

chemotherapy. In glioblastoma in vitro and in xenografts, the 
combined treatment with temozolomide and the pharmacological 
PARP inhibitors (PARPi) rucaparib or veliparib showed superior 
efficacy over single temozolomide treatment [35-40] (Figure 1). 
Because PARP1 is involved in the B- and C-NHEJ mechanisms for repair 
of DSB in the absence of functional HR [25-27], HR defective cells, 
and specifically those with BRCA2 deficiency, show hypersensitivity 
towards PARPi [41,42].

This augmented susceptibility of BRCA2 mutant cells resembles  
the phenomenon “synthetic lethality”, a term that describes the lethal 
gene interactions of two defective cellular pathways [43]. Synthetic 
lethality is of clinical interest, since it allows a genetically based 
stratification of patients into effective therapies. “Synthetic lethality”-
like effects can be expected if PARPi are combined with RAD51 small 
molecule inhibitors.

The interplay between PARP activity and other DSB repair 
mechanisms is the subject of intense research [44-46]. A 
disadvantage in the use of PARPi for glioblastoma therapy is the fact 
that established PARPi, like olaparib and rucaparib, are substrates of 
P-glycoproteins. This efflux system removes them rapidly from cells, 
reduces their uptake through the brain-blood barrier, and thereby 
their efficiency to kill glioblastoma cells [37,47]. In order to increase 
their pharmacological applicability, combinations with drugs that act 
as efflux pump inhibitors are investigated in cancer cell models [48] 
including in glioblastoma [49].

Another implementable strategy is the downregulation of RAD51 
or other essential HR players by inhibition of proteins involved in 
their regulation. For example, multiple studies have reported that 
class I HDACs, HDAC1, HDAC2, HDAC3, and HDAC8, promote the 
expression of HR proteins (Fig. 1). Thus, these epigenetic enzymes are  
increasingly appreciated targets for which more and more clinically 
approved HDAC inhibitors are developed (for a detailed review [10]). 

CONCLUDING REMARKS
Due to the highly invasive phenotype of GBM and its ability 

to spread throughout the brain parenchyma, complete or near 
complete surgical resection is almost impossible. Consequently, 
the whereabouts of a residual tumor tissue after the operation is 
practically unavoidable. Despite the following aggressive radio-/
chemotherapy, survival rates are usually inadequate due to 
development of resistance. This process frequently involves an 

Figure 1: Effects of innovative inhibitors on HR proteins. RAD51 inhibitors RI-1 and B02 inhibit the DNA binding activity of the RAD51 
recombinase and joint molecule formation during HR.
Various HDACi decrease the expression of RAD51 and downregulate proteins of the MRN complex, EXO1 or CtlP, or BRCA1, which 
mediate the repair of cytotoxic DNA lesions.
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overexpression of DNA repair proteins and an ensuing activation of 
DNA repair pathways. DNA repair pathways protect glioblastoma cells 
from lethal DSBs that are induced by alkylating chemotherapeutics 
and serve as a second or third line of cellular defense. Among these 
DNA repair mechanisms, HR and PARP-dependent B-NHEJ are 
particularly important for glioblastoma resistance to chemotherapy 
in the absence of MGMT. In this way they represent suitable targets 
for inhibition/downregulation by small molecule inhibitors. There 
is at least one clinical trial designed to test a PARPi (olaparib) in 
combination with temozolomide and/or radiotherapy for treatment 
of patients with GBM [50].  Novel approaches utilizing PARPi, RAD51i 
or epigenetic drugs like some HDACi, which cause downregulation of 
HR proteins [10, 51], may overcome glioblastoma cell resistance to 
improve patient survival.
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