

WORLD JOURNAL OF NUTRITION AND METABOLISM, DIETETICS

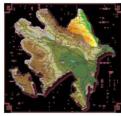
Assessment of Agro-Industrial Characteristics of Land Cover of Beylagan Region

Oglu AZH* Aliev BH Institute of Soil Science and Agrochemistry, Azerbaijan

Article Information

Article Type:	Research Article	*Corresponding Author:	Citation:
Journal Type: Volume: 1 Manuscript ID: Publisher:	Open Access Issue: 1 WJNMD-1-103 Science World Publishing	Aliyev Zakir Huseyn Oglu, Institute of Soil Science and Agrochemistry ANAS-2020, Azerbaijan, E-mail: zakirakademik@mail.ru	Oglu AZH (2021). IAssessment of Agro-Indus- trial Characteristics of Land Cover of Beylagan Region. Sci World J Pediatr. 1(1); 1-15
Recieved Date: Accepted Date: Published Date:	26 February 2021 19 March 2021 26 March 2021		

Copyright: © 2021, Oglu AZH, *et al.*, This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 international License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.


ANNOTATION

It was determined by the research that the object of research was excavated plots of land with a total area of 1776.99 ha, and their morphological features were described by genetic layers. yes; Clean pasture-147.58ha; Reed pasture-6.83 ha; Shrub pasture -4.25 ha; Other lands-942.10 ha; The area set aside was 7.2 hectares. Based on the results of field research and laboratory analysis, a soil map was compiled on topographic bases and an explanatory report was written. Professor R.H. Mammadov's scale was used to determine the granulometric composition of soils here. Natural-economic features of the area, including geographical position, relief, agro-climatic elements were studied, soil cover; vegetation. The role of vegetation in the process of soil formation and formation of soil cover, increase of soil fertility with the formation of organic matter depends on the density of vegetation, maintenance of normal soil moisture, reduction of water washing effect, prevention of formation and development of soils and erosion elm, garatikan shrubs, licorice, birch, thyme, chicory, etc. are widely spread in the area from shrubs, suitability of the area for use for grain crops; Soil-forming rocks, etc., as well as the great role of the chemical composition of the parent rock in the process of soil formation have been widely studied.

KEY WORDS: Soil cover, soil-forming rocks, soil organic composition, field-soil research, laboratory analysis, gray-mead-ow, light gray-meadow soils; heavy clay, light clay, etc.

INTRODUCTION

With the adoption of the Law "On Land Reform" on August 2, 1996, which is the basis of agrarian reform, large-scale field land survey work was accelerated in the Republic. Rules of land survey Prepared in accordance with the Law of the Republic of Azerbaijan, Decree No. 516 of the President of the Republic of Azerbaijan dated May 4, 2015 on amendments to the Decree of the President of the Republic of Azerbaijan No. 116 dated May 4, 2015 "On ensuring the activities of the State Committee for Property Affairs" and other normative legal acts. The research is carried out by the Cadastre and Land Management Project-Research Center subordinated to the Real Estate Cadastre and Address Register Service under the State Committee for Property Affairs of the Republic of Azerbaijan (Figure 1).

In accordance with the requirements of the State Program on Socio-Economic Development of the Regions of the Republic of Azerbaijan in 2014-2018, the establishment of an electronic land registration system in the Republic, regardless of the type of ownership, is used to improve the fertility, restoration, protection and use of agricultural lands. is one of the issues on the agenda now. By the Decree of the President of the Republic of Azerbaijan No. 818 dated March 7, 2016 "On additional measures in the field of regulation of land relations in the Republic of Azerbaijan", a number of tasks were set before the State Committee for Property Affairs of the Republic of Azerbaijan.

These include the creation of an electronic land cadastre information system and the compilation of a digital cadastral map by conducting electronic registration and mapping of state, municipal and privately owned lands. The total area of the surveyed area was 2719.09 ha, research work was carried out in 1776.99 ha. The area is divided into the following natural farms.

> Planting 1611.09 ha Dinc 7.24 ha Net grazing 147.58 ha Reed pasture 6.83 ha Bush pasture 4.25 ha Other lands 942.10 ha

During the study, soil sections were excavated in the area and morphological features were described in genetic layers. Soil samples were taken from the excavated sections and analyzed in the Center's laboratory by the following methods:

- 1. Hygroscopic moisture by thermal method
- 2. Granulometric composition by Kaczynski's pipette method
- 3. General humus by the method of Tyurin
- 4. Total nitrogen By calculation
- 5. Carbonate With a calcimeter device
- 6. Absorbed Ca and Mg by Ivanov method
- 7. Absorbed Na by Hedroyts method
- 8. pH water suspension with pH meter
- 9. Full and brief water weight by Hedroyts method
- 10. Dry residue by weight

Thus, based on the results of field research and laboratory analysis, a soil map was prepared on a topographic basis and a report was written.

Archival materials were used in compiling the land map and writ-

ing the report. Professor RH Mammadov's scale was used to determine the granulometric composition.

NATURAL CONDITIONS

Geographical position. First Shahsevan village Administrative Territorial District of Beylagan region, State Land Fund in the north, Second Shahsevan village Administrative Territorial District in the east, Fuzuli district land in the south, Amirzeyidli village Administrative Territorial District in the south-west, State Land Fund in the west and Mil settlement settlement Administrative Territorial and Milabad settlement is bordered by the lands of the Administrative Territorial District.

Relief. Relief, as a structure of the earth's surface, is directly involved in the formation of soil cover as a factor in soil formation. It plays an important role in changing chemical and biological processes, hydrothermal regime and microclimate. Thus, the distribution of solar energy and atmospheric sediments is directly related to relief. The relief of Birinci Shahsevan village consists of sloping and slightly sloping plains.

Climate: Climate is one of the important factors as a factor in soil formation. Beylagan region is located in the south of Mil plain. The climate of the area belongs to the type of temperate-hot semi-desert and dry steppes with dry summers. This type of climate is characterized by very low and low humidity, mild winters and dry summers. The average annual air temperature is 14.0oC. The average monthly temperature in January is 1.8oC, and the average monthly temperature in July is 26.0oC. The average annual temperature of the soil surface is 18 oC, fluctuating between 2-34 oC per year.

Vegetation: Vegetation is a key factor in the process of soil formation and the formation of soil cover. The increase in soil fertility with the formation of organic matter depends on the density of vegetation. Maintaining normal soil moisture, reducing the washing effect of water, preventing the formation and development of the erosion process are closely related to vegetation.

In the area we studied, shrubs include elm, blackberry bushes, and grasses such as licorice, birch, birch, chicory, etc. spread. The sown areas of the area are used for grain crops.

Soil-forming rocks. Soil-forming rocks affect the granulometric composition, chemical and mineralogical composition of the soil, causing the formation of soil profile and genetic layers. The chemical composition of the parent rock plays an important role in the process of soil formation. The richer the parent rock, the better the quality of the soil formed on it.

Thus, the areas we studied consist of sloping and slightly sloping plains, and the soils are formed on proluvial sediments.

GROUND COVER: According to the results of field research and laboratory analysis, the following soil types and subtypes are widespread in the area.

- Gray meadow
- Light gray meadow
- Gray-meadow soils

Gray-meadow lands cover 458.01 ha or 16.84% of the total area in the eastern and southern parts of Birinci Shahsevan village.

Depending on what the granulometric composition of these soils and the thickness of the soil layer; 1) Divided into heavy clayey, thick, gray-meadow species.

In order to get acquainted with the characteristic morphological features of the studied area, we give a field description of section 22 dug in the field south of Garavelli village.

0-23 cm - gray, large topavari, heavy clayey, soft, roots and rhizomes, boils, less moisture, clear transition.

23-52 cm - light gray, topavari, light clay, low kip, insect tracts, boils, less moisture, gradual transition

52-94 cm - grayish, topavari, light clay, low kip, rust stains, boiling moisture, gradual transition.

94-123 cm - grayish, small topavari, light clay, low kip,white spots, boils, gradual transition to moisture

123-165 cm - straw, indistinguishable, light clayey,soft,white spots, boils, damp.

It is clear from the morphological description of the section that the color of these soils is gray in the upper layer, light gray and gray in the middle layer, and straw in the last layer. The structure is not selected on the top layer of large topavari, topavari and small topavari on the middle layer, and on the last layer. The granulometric composition is heavy clay in the first layer, light clay in the other layers. The density varies from soft to soft on the top layer, light to soft on the middle layer, and soft on the last layer. Roots and rhizomes, insect tracts, rust spots and white spots are found in new derivatives and nutrients. Hygroscopic humidity is low humidity in the top layer, less moisture and humidity in the middle layers, and moisture in the last layer. The transitions in the genetic layers are clear and gradual. According to the results of laboratory analysis, the granulometric composition of gray-meadow soils is heavily clayey.

However, it is found in light clay in the profile. Thus, the amount of physical clay in these soils is 45.18-49.08% in the upper layers, 43.36-53.20% in the profile. (Table 2). The hygroscopic humidity of the main components varies between 4.6-5.7%. The total amount of humus is 2.09-2.10% in the upper layers and 0.69-2.10% in the

one-meter layer. According to the total humus, the total nitrogen content in the profile is 0.08-0.17%. The pH in the water suspension is 8.10-8.37 units, which indicates that the soil is alkaline (Table 3). The total amount of absorbed bases in gray-meadow soils is 28.50-35.43 mg. The amount of Ca cation is 66.50-70.18%, Mg cation is 27.19-31.33%, and Na cation is 2.17-2.85% of the total absorbed bases (Table 4).

2.Light gray-meadow soils

Light gray-meadow lands cover 1318.98 ha or 48.51% of the total area, spreading in different parts of Birinci Shahsevan village PPP. These soils are divided into the following types according to their granulometric composition and thickness of the soil layer.

Light clay, thick, light gray-meadow

Heavy clayey, thick, light gray-meadow

In order to get acquainted with the characteristic morphological features of the studied area, we give a field description of section 16 dug in the field north of Birinci Shahsevan village.

0-21 cm - light gray, lizard, light clay, less kip, roots and rhizomes, boiling, dry, clear transition.

21-49 cm - light gray, large topavari, light clay, kip, insect tracks, boils, less moisture, gradual transition

49-88 cm - grayish, topavari, light clay, low kip, rust stains, boils less moisture, the transition is gradual.

88-120 cm - straw, small clumps, heavy clay, soft, white spots, boils, little moisture transition gradually.

120-161 cm - straw, indistinguishable, heavy clayey, soft, white spots, boils, gradual transition to moisture.

It is clear from the morphological description of the section that the color of these soils is light gray in the upper layer, light gray in the middle layers, grayish and straw, and the last layer is straw. The structure is clustered in the upper layer, large topavari, topavari and small topavari in the middle layers, and not selected in the last layer. The granulometric composition is light clay in the first layer, light clay and heavy clay in the middle layers, and heavy clay in the last layer. The consistency is less kip in the upper layers, less kip in the middle layers, kip and soft, and soft in the last layer.

Roots and rhizomes, insect tracts, rust spots and white spots are found in new derivatives and nutrients.

Hygroscopic moisture is dry in the upper layer, slightly moist in the middle layers, and moist in the last layer. The transitions in the genetic layers are clear and gradual.

According to the results of laboratory analysis, the granulometric composition of light gray-meadow soils is light clayey and heavy clayey.

Table 1: Average monthly and annual information on climate indicators

Meteo	Climate	Month	~											
st.	indicators	Month	.5											
name														A mmuo1
		Ι	II	III	ΙV	V	VI	VII	VIII	IX	X	XI	XII	Annual
В														
Е														
Y	The average temperature	1.8	3.7	6.9	12.5	19	23.3	26	25.4	21.1	15.4	9.2	12	14
L	of the air, with ⁰ C	1.8	5.7	0.9	12.3	19	23.5	20	23.4	21.1	13.4	9.2	4.2	14
Α														
Q														
А	Average relative humidity, in%	81	79	78	73	68	60	58	62	70	76	82	82	72
Ν	Precipitation, in mm	31	28	32	30	28	26	12	12	21	37	30	25	312
	Possible evaporation, in mm	25	28	44	68	107	151	180	154	105	64	36	28	990
	The average temperature of the soil surface	2	5	9	16	25	30	34	32	25	18	10	4	18

Cut	XX7.4 1 41	Particle siz	In% of physical clay					
№	With depth cm	1-0.25	0.25-0.05	0.05-0.01	0.01-0.005	0.005-0.001	< 0.001	< 0.01
1	2	3	4	5	6	7	8	9
1. Hea	vy clay, thick, thick, g	gray-grass						·
	0-23	0.59	27.23	23.10	21.50	17.40	10.18	49.08
	23-52	0.64	23.48	23.88	21.72	18.20	12.08	52.00
22	52-94	0.55	24.17	24.12	20.16	19.28	11.72	51.16
	94-123	0.88	21.96	23.96	21.20	18.24	13.76	53.20
	123-165	0.67	27.97	21.12	18.88	16.36	15.00	50.24
	0-23	0.74	32.96	21.12	18.88	16.32	9.98	45.18
	23-50	0.63	28.61	23.52	19.28	17.20	10.76	47.24
75	50-97	0.65	34.45	21.54	19.00	15.48	8.88	43.36
	97-125	0.49	33.29	20.74	19.68	16.88	8.92	45.48
	125-168	0.73	31.51	21.52	18.72	15.20	12.32	46.24

Table 3: I The main components of gray-meadow soils.(necessarily on dry land, in%)

Cut		Hiqros-				To CO ₂	pH su
N⁰	WV dia la sulla sur	kopik	General			according to	suspenzi-
	With depth cm	liioisture		CO ₂	Ca CO ₃	at the age of	
			Humus	Nitrogen			
1	2	3	4 5		6	7	8
1. Heav	y clayey, thick, gray-gra						
	0-23	5.1	2.1	0.17	3.95	8.98	8.18
	23-52	5.5	1.2	0.11	3.76	8.55	8.19
22	52-94	5.4	0.69	0.08	4.14	9.41	8.14
	94-123	5.3			3.57	8.11	8.1
	123-165	5.7					
	0-23	4.9	2.09	0.17	4.7	10.68	8.34
	23-50	5	1.2	0.11	4.51	10.25	8.3
75	50-97	4.6	0.85	0.09	4.14	9.41	8.37
	97-125	4.8			3.95	7.69	8.36
	125-168	4.9			3.83	8.52	8.33

Cut	Danth	Winning base	es, in mg.ekv		Swallowed	From the sum of the	e won bases, %-with	
Cut №	Depth in cm	Ca	Mg	Na	of the basics in total mg.ekv	Ca	Mg	Na
1	2	3	4	5	6	7	8	9
1. Heav	y clayey, thi	ck, gray-mea	dow	•			·	·
22	0-23	24.00	10.63	0.80	35.43	67.74	30.00	2.26
22	23-52	21.50	10.13	0.70	32.33	66.50	31.33	2.17
75	0-23	20.75	8.25	0.85	29.85	69.51	27.64	2.85
75	23-50	20.00	7.75	0.75	28.50	70.18	27.19	2.63

Table 4: I The amount of bases absorbed in the gray-meadow soils(absolute% in dry land)

Thus, the amount of physical clay in these soils is 42.20-45.12% in the upper layers, 40.52-46.08% in the profile. (Table 5). The hygroscopic humidity of the main components varies between 4.2-4.8%.

The amount of total humus is 1.68-1.93% in the upper layers and 0.69-1.93% in the one-meter layer. According to the total humus, the total nitrogen content in the profile is 0.08-0.16%.

The pH in the water suspension is 8.28-8.35 units, which indicates that the soils are alkaline. (Table 6). The total amount of absorbed bases in light gray-meadow soils is 31.90-46.30 mg.

The amount of Ca cation is 64.26-70.22%, Mg cation is 26.69-32.92% and Na cation is 2.63-3.10% of the total absorbed bases (Table 7).

Soil salinization

In addition to field research in the municipal and privately owned and state-owned areas, it is also planned to study the salinity of these lands. For this purpose, soil samples taken from the surveyed areas were analyzed in the laboratory of the Center and their salinity levels and types were determined. The results of the analysis show that the salinity types of soils in the studied area are chlorinated-sulfate and sulfate.

Salinity rates k.t.e.n. Q.Z. Azizov and S.C. Appointed on the basis of the above scale of Orujov:

Based on the materials of field research and the results of laboratory analysis, a salinity map of the study area was compiled. All full, brief water weight and dry residue analyzes were used in compiling the map and writing the report.

It is known from the field research materials and the results of laboratory analysis that the studied soils were subjected to the following salinization:

I Not salted

II. Weakly salted

I Non-saline soils

These lands are distributed in the north-eastern and eastern parts of the studied area and make up 1667.12 hectares or 61.31% of the total area. The granulometric composition of these soils is light clayey and heavy clayey.

In non-saline soils, the amount of dry residue increases and decreases between 0.145-0.647% along the profile. The area is mostly not saline.

Non-saline soils are located in light clayey light meadow-gray, heavy clayey meadow-gray, heavy clayey light meadow-gray varieties. In the 0-100 cm layer, the average dry residue for cultivated plants is between <0.25% in saline-chlorinated soils, <0.40% in chlorinated-sulphate soils, and the average dry residue for wild plants is in saline-chlorinated saline soils.

These soils are considered non-saline as they are <0.30% and less than <0.40% in chlorinated-sulphate soils. Types of salinization are sulfate-chlorine and chlorine-sulfate (Table.8).

II. Weakly saline soils

These lands cover 109.87 hectares or 4.4% of the total area, spreading in different parts of the studied area. The granulometric composition of weakly saline soils is light clayey and heavy clayey. The amount of dry residue in these soils increases and decreases between 0.325-0.707% along the profile.

In the 0-100 cm layer, the average dry residue for cultivated plants is 0.40-0.80% in saline soils with chlorinated sulphate, and the average dry residue for wild plants is 0.40-0.80% in saline chlorinated sulphate soils. soils are considered weakly saline. The salinity type is chlorinated-sulphate (Table 9).

 Table 5: II Granulometric composition of light gray-meadow soils (necessarily on dry land, in%)

Cut		Particle si	ze in mm, quai	ntity in% ,				In% of physical clay
№	With depth cm	1-0.25	0.25-0.05	0.05-0.01	0.01-0.005	0.005-0.001	< 0.001	<0.01
1	2	3	4	5	6	7	8	9
2. Ligl	nt clay, thick, light g	ray-meadow	•			•		
	0-25	0.54	27.30	22.00	20.56	19.36	10.24	50.16
	25-51	0.49	25.43	21.88	20.72	18.56	12.92	52.20
6	51-93	0.63	29.85	20.52	19.40	17.28	12.32	49.00
	93-124	0.77	25.75	22.44	20.00	16.36	14.68	51.04
	124-163	0.54	31.14	20.32	19.88	17.36	10.76	48.00
	0-21	0.81	25.79	22.24	18.96	17.32	14.88	51.16
	21-49	0.96	26.84	21.80	19.72	17.08	13.60	50.40
16	49-88	0.65	23.67	22.44	19.88	18.32	15.04	53.24
	88-120	0.83	32.49	20.52	18.00	16.72	11.44	46.16
	120-161	0.48	29.32	21.4	19.88	17.12	12.16	49.16
	0-24	0.81	23.91	23.12	20.52	18.22	13.42	52.16
	24-55	0.87	23.01	22.88	21.16	17.52	14.52	53.24
42	55-94	0.73	25.35	23.72	21.16	19.24	9.80	50.20
	94-123	0.69	31.31	20.00	18.56	16.84	12.60	48.00
	123-159	0.60	35.86	19.42	17.56	15.48	11.08	44.12
	0-21	0.75	26.93	21.16	19.32	17.36	14.48	51.16
	21-50	0.82	22.64	23.12	21.50	18.52	13.40	53.42
56	50-92	0.94	26.58	22.00	19.68	17.42	13.38	50.48
	92-119	0.86	32.78	19.32	17.24	15.88	13.92	47.04
	119-157	0.75	30.09	20.08	19.20	17.24	12.64	49.08
			t gray-meadow					
	0-23	0.53	31.91	20.20	17.86	16.00	13.50	47.36
	23-48	0.77	27.79	22.00	19.82	17.36	12.26	49.44
30	48-89	0.49	36.33	18.70	17.24	15.44	11.80	44.48
	89-122	0.52	33.28	20.00	19.28	17.50	9.42	46.20
	122-166	0.99	29.49	21.12	19.88	15.48	13.04	48.40
	0-25	0.69	30.87	20.04	18.24	16.32	13.84	48.40
	25-54	0.82	25.50	23.12	19.64	16.64	14.28	50.56
63	54-91	0.60	35.52	18.56	17.92	15.42	11.98	45.32
	91-122	0.55	37.13	19.32	17.48	13.56	11.96	43.00
	122-164	0.59	31.13	22.12	19.64	17.56	8.96	46.16

Table 6: II The main components of light gray-meadow soils.(necessarily on dry land, in%)

		Hiqros-	General			To CO ₂	pH su
Section №	With depth cm	kopik	Humus	Nitrogen	CO ₂	according to	suspenzi-
		moisture		e		Ca CO ₃	at the age of
1	2	3	4	5	6	7	8
2. Light clay, thi	ck, light gray-meadow						
	0-25	5.3	1.62	0.14	5.26	11.96	8.00
	25-51	5.6	1.14	0.11	4.89	11.11	8.01
6	51-93	5.2	0.81	0.09	5.64	12.82	8.03
	93-124	5.4			5.45	12.39	8.02
	124-163	5.0			5.83	13.25	8.00
	0-21	5.5	1.76	0.15	5.45	12.39	8.22
	21-49	5.3	1.12	0.11	5.26	11.99	8.21
16	49-88	5.6	0.78	0.08	6.02	13.68	8.19
	88-120	4.9			5.83	13.25	8.11
	120-161	5.2			6.20	14.09	8.14
	0-24	5.4	1.56	0.13	5.26	11.96	8.24
	24-55	5.6	1.02	0.10	4.70	10.68	8.22
42	55-94	5.2	0.64	0.08	5.08	11.55	8.19
	94-123	5.1			4.70	10.68	8.25
	123-159	4.7			4.51	10.25	8.20

	0-21	5.4	1.80	0.15	4.14	9.41	8.28
	21-50	5.6	1.08	0.10	4.51	10.25	8.30
56	50-92	5.2	0.84	0.09	4.89	11.11	8.31
	92-119	5.2			4.14	9.41	8.24
	119-157	5.1			4.70	10.68	8.27
3. Heavy clayey, th	nick, light gray-meadow						
	0-23	5.3	1.75	0.14	5.83	13.25	8.31
	23-48	5.2	1.00	0.10	6.02	13.68	8.33
30	48-89	5.1	0.79	0.08	6.20	14.09	8.27
	89-122	4.9			5.64	12.82	8.28
	122-166	5.0			5.45	12.39	8.22
	0-25	5.0	1.68	0.14	4.32	9.82	8.18
	25-54	5.4	1.02	0.10	3.95	8.98	8.25
63	54-91	4.9	0.65	0.08	4.89	11.11	8.26
	91-122	4.6			4.51	10.25	8.25
	122-164	4.9			5.08	11.55	8.22

Table 7: II. The amount of bases absorbed in light gray-meadow soils (absolute%in dry land)

<u> </u>	Dereth	Winning horse			Swallowed	From the sum of	f the won bases,			
Cut,	Depth	Winning bases	s, in mg.ekv		of the basics	%-with	%-with			
№	in cm	Са	Mg	Na	in total mg.ekv	Ca	Mg	Na		
1	2	3	4	5	6	7	8	9		
2.Light	clay, thick, lig	ht gray-meado	W							
6	0-25	20.38	10.00	0.90	31.28	65.15	31.97	2.88		
0	25-51	20.13	9.00	0.80	29.93	67.26	30.07	2.67		
16	0-21	19.50	8.75	0.90	29.15	66.90	30.02	3.09		
16	21-49	23.00	12.25	1.05	36.30	63.36	33.75	2.89		
42	0-24	20.50	8.13	0.85	29.48	69.54	27.58	2.88		
42	24-55	22.25	10.25	0.85	33.35	66.72	30.73	2.55		
57	0-21	24.25	9.63	0.80	34.68	69.93	27.77	2.31		
56	21-50	23.00	10.00	0.85	33.85	67.95	29.54	2.51		
3. Heav	y clayey, thick	, light gray me	adow							
30	0-23	20.13	8.62	0.95	29.70	67.78	29.02	3.49		
50	23-48	21.63	8.75	1.10	31.48	68.71	27.80	3.20		
(2)	0-25	24.25	9.63	0.70	32.58	74.43	23.42	2.15		
63	25-54	22.00	9.00	0.70	31.70	69.40	28.39	2.21		

Table 7.1: Classification of soils for cultivated crops according to the degree and type of salinity

		nity, salinity, in	%	1	1			
Salinity gradation	Soda					Sulphated		
%-with	High Alkaline	Neutral,	Chlorinated	Sulfate - chlorinated	Chlorinated - sulfated	Gypsum, 1-2%	Gypsum, >2%	
Not salty	<0,15	<0,20	<0,20	<0,25	<0,40	0,60-0,80	0,80-1,00	
Weakly salted	0,15-0,20	0,20-0,30	0,20-0,40	0,25-0,50	0,40-0,80	0,80-1,00	1,00-1,30	
Moderately salted	0,20-0,40	0,30-0,50	0,40-0,70	0,50-0,80	0,80-1,30	1,00-1,50	1,30-1,80	
Severely salted	0,40-0,70	0,50-0,80	0,70-1,00	0,80-1,30	1,30-1,80	1,50-2,20	1,80-2,50	
Very severe								
Salted	0,70-1,00	1,80-1,20	1,00-1,50	1,30-2,00	1,80-2,50	2,20-3,00	2,50-3,50	
Brine	>1,0	>1,2	>1,5	>2,0	>2,5	>3,0	>3,5	

Table 7.2: Classification of soils for wild plants by degree of salinity and type

	Types of salir	ity, salinity, in	%				
Salinity gradation	Soda					Sulphated	
°%	High alkaline	Neutral	Chlorinated	Sulfated - chlorinated	Chlorinated - sulfated	Gypsum, 1-2%	Gypsum, >2%
Not salted	<0,20	<0,25	<0,25	<0,30	<0,40	<0,80	<0,1
Slightly salted	0,20-0,30	0,25-0,40	0,25-0,50	0,30-0,60	0,40-0,80	0,80-1,20	1,00-1,50
Medium saline	0,30-0,50	0,40-0,80	0,50-1,00	0,60-1,20	0,80-1,50	1,20-2,00	1,50-2,20
Severely salted	0,50-0,90	0,80-1,30	1,00-1,70	1,20-2,00	1,50-2,50	2,00-3,00	2,20-3,20
Very severe salted	0,90-1,50	1,30-2,00	1,70-2,50	2,00-3,00	2,50-3,50	3,00-4,00	3,20-4,50
Brine	>1,5	>2,0	>2,5	>3,0	>3,5	>4,0	>4,5

Table 8: I Results of complete, brief water absorption and dry residue analysis of non-saline soils (necessarily on dry land, in% / eq)

		Anions				Cations			Dry
Cut	Depth							Na +	Residue
N ₀	in cm	CO3	HCO ₃	CL	SO_4	Ca	Mg	The difference	%-with
								according to	
1	2 ht alax light a	3	4 nlorinated-sulfate)	5	6	7	8	9	10
1) Ligi			0.043	0.018	0.140	0.022	0.006	0.057	
	0-25		0.70	0.50	2.91	1.12	0.50	2.49	0.295
	25-51		0.046	0.031	0.170	0.027	0.006	0.076	0.368
	25-51		0.75	0.87	3.54	0.50	0.50	3.29	0.368
6	51.02		0.040	0.027	0.155	0.022	0.008	0.066	0.330
0	51-93		0.65	0.75	3.23	1.12	0.63	2.88	0.330
	93-124		0.043	0.022	0.131	0.020	0.006	0.059	0.299
			0.70	0.62	2.73	1.00	0.50	2.55	0.299
	124-163		0.037	0.022	0.124	0.020	0.004	0.056	0.276
			0.60	0.62	2.58	1.00	0.37	2.43	0.276
	0-24		0.046	0.018	0.118	0.020	0.004	0.054	0.275
	0-24		0.75	0.50	2.46	1.00	0.37	2.34	0.275
	24-55		0.046	0.013	0.112	0.015	0.003	0.056	0.259
	24-55		0.75	0.37	2.33	0.75	0.25	2.45	0.239
42	55-94		0.043	0.018	0.118	0.017	0.004	0.055	0.263
42	55-94		0.70	0.50	2.46	0.87	0.38	2.41	0.263
	94-123		0.043	0.022	0.102	0.017	0.004	0.054	0.260
	94-125		0.70	0.62	2.27	0.87	0.38	2.34	0.200
	123-159		0.043	0.018	0.115	0.017	0.003	0.057	0.266
	123-139		0.70	0.50	2.39	0.87	0.25	2.47	0.200

		0.040	0.027	0.128	0.015	0.004	0.057	
	0-21	0.65	0.75	2.66	0.75	0.37	2.47	0.259
		0.043	0.022	0.135	0.020	0.006	0.063	
	21-50	0.70	0.62	2.81	1.00	0.50	2.76	0.312
		0.046	0.018	0.120	0.020	0.004	0.055	
56	50-92	0.75	0.50	2.50	1.00	0.37	2.38	0.274
		0.043	0.013	0.132	0.022	0.004	0.059	
	92-119	0.70	0.37	2.75	1.12	0.38	2.57	0.298
		0.046	0.018	0.130	0.017	0.008	0.057	
	119-157	0.75	0.50	2.71	0.87	0.63	2.46	0.288
		0.046	0.009	0.048				
	0-25	0.75	0.25	1.01				0.145
		0.049	0.013	0.075				
	25-50	0.80	0.37	1.56				0.225
3		0.043	0.013	0.111				
	50-100	0.70	0.37	2.30				0.332
	100.150	0.046	0.013	0.117				0.250
	100-150	0.75	0.37	2.43				0.350
	0.25	0.043	0.018	0.140				0.420
	0-25	0.70	0.50	2.91				0.420
	25-50	0.043	0.018	0.108				0.324
10	23-30	0.70	0.50	2.25				0.324
10	50-100	0.046	0.027	0.060				0.180
	50-100	0.75	0.75	1.25				0.180
	100-150	0.046	0.022	0.052				0.155
	100-150	0.75	0.62	1.08				0.155
	0-25	0.043	0.027	0.050				0.150
	0-23	0.70	0.75	1.04				0.130
	25-50	0.040	0.022	0.080				0.240
13	23-30	0.65	0.62	1.67				0.240
15	50-100	0.046	0.018	0.106				0.317
	50-100	0.75	0.50	2.20				0.517
	100-150	0.046	0.018	0.110				0.330
	100 100	0.75	0.50	2.29				0.550
	0-25	0.043	0.022	0.129				0.387
		0.70	0.62	2.69				
	25-50	0.046	0.018	0.109				0.328
15		0.75	0.50	2.28				
	50-100	0.049	0.018	0.117				0.350
		0.80	0.50	2.43				
	100-150	0.046	0.013	0.097				0.290
		0.75	0.37	2.01				
	0-25	0.043	0.022	0.110				0.330
		0.70	0.62	2.29				
	25-50	0.046	0.022	0.123				0.370
21		0.75	0.62	2.57				
	50-100	0.049	0.027	0.134				0.402
		0.80	0.75	2.79 0.139				
	100-150							0.418
		0.75	0.62	2.90				

	1	1	0.016	0.000	0.400	1	1	1	1
	0-25		0.046	0.022	0.128				0.385
	0-23		0.75	0.62	2.67				0.385
			0.043	0.013	0.133				
	25-50								0.400
54			0.70	0.37	2.78				
	50 100		0.046	0.018	0.103				0.310
	50-100		0.75	0.50	2.15				0.310
			0.043	0.018	0.072				
	100-150								0.215
			0.70	0.50	1.49				
	0.25		0.043	0.022	0.105				0.315
	0-25		0.70	0.62	2.19				0.313
			0.040	0.018	0.101				
	25-50		0.65	0.50	2.10				0.302
58									
	50-100		0.043	0.022	0.088				0.265
	50-100		0.70	0.62	1.84				0.205
			0.043	0.022	0.080				
	100-150		0.70	0.62	1.67				0.240
	0.25		0.70	0.02	1.0/				0.222
1	0-25 25-50								0.332 0.290
1	50-100		1		1				0.345
	0-25								0.497
2	25-50								0.348
	50-100								0.245
4	0-25 25-50								0.297 0.228
1	50-100								0.240
	0-25								0.447
5	25-50								0.395
	50-100 0-25								0.328 0.440
7	25-50								0.350
ľ	50-100								0.280
	0-25								0.593
11	25-50								0.635
	50-100 0-25								0.480 0.485
18	25-50								0.405
	50-100								0.335
	0-25								0.570
19	25-50								0.385
	50-100 0-25								0.260 0.367
20	25-50								0.318
	50-100								0.265
	0-25				ļ				0.415
24	25-50 50-100				+				0.315 0.240
	0-25				+				0.542
43	25-50								0.480
	50-100								0.245
47	0-25								0.237
47	25-50 50-100								0.200 0.195
	0-25				1				0.195
50	25-50								0.190
	50-100								0.244
51	0-25								0.457
51	25-50 50-100	+			+				0.396 0.312
	0-25	1	1		1				0.312
52	25-50	1							0.425
	50-100				ļ				0.310
53	0-25 25-50								0.395 0.420
55	25-50 50-100	1			+				0.420
L	100 100	1	1	1	1	1	1	1	

	0-25							0.392
5	25-50							0.408
-	50-100							0.320
	0-25							0.160
,	25-50							0.200
	50-100							0.175
	0-25							0.432
)	25-50							0.350
Lick	50-100	w (sulfated)						0.400
Ligii			0.012	0 1 1 2	0.020	0.002	0.049	
	0-21							0.246
		0.65	0.37	2.33	1.00	0.25	2.10	
		0.037	0.018	0.118	0.020	0.003	0.053	
	21-49							0.257
16		0.046	0.013	0.130	0.020	0.006	0.054	
	49-88	0.75	0.37	2 71	1.00	0.50	2.33	0.284
	88-120							0.308
	00 120	0.60	0.62	3.02	1.12	0.50	2.62	0.500
		0.037	0.013	0 122	0.020	0.006	0.049	
	120-161							0.256
					1.00	0.50	2.14	
		0.040	0.022	0.174				
	0-25	0.65	0.62	3.62				0.522
	25-50	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.550				
49	25 50	0.70	0.50	3.82				0.550
		0.043	0.027	0 102				
	50-100							0.307
		0.043	0.018	0.092				
	100-150	0.70	0.50	1.01				0.275
	0.05	0.70	0.50	1.91				0.252
	0-25							0.352
	50-100							0.400
	0-25							0.362
	25-50							0.272
	50-100							0.375
	0-25							0.477
	25-50							0.328
	50-100							0.280
	0-25							0.300
	25-50							0.270
	50-100							0.186
	0-25							0.485
	25-50 50-100							0.365
	0-25							0.620
	25-50							0.550
	50-100							0.425
	0-25							0.547
	25-50							0.448
	50-100							0.325
	0-25							0.500
	25-50							0.420
	50-100							0.380
	0-25							0.522
	25-50							0.475

11/15

	1	0.010	0.040	0.117	0.000	0.001	0.054	1
	0-23	0.043	0.018	0.115	0.020	0.004	0.056	0.284
		0.70	0.50	2.60	1.00	0.37	2.43	
	23-52	0.043	0.018	0.128	0.020	0.004	0.057	0.282
	23 32	0.70	0.50	2.54	1.00	0.37	2.49	0.202
	52-94	0.046	0.022	0.112	0.017	0.003	0.057	0.268
	52-94	0.75	0.62	2.33	0.87	0.25	2.46	0.208
22	04.122	0.040	0.018	0.118	0.017	0.004	0.054	0.265
	94-123	0.65	0.50	2.46	0.87	0.38	2.36	0.265
		0.043	0.013	0.117	0.020	0.003	0.052	
	123-165	0.70	0.37	2.44	1.00	0.25	2.26	0.259
	4) Heavy clayey, g	ray-meadow (sulphate)			0.005			
	0-23	0.043	0.022	0.228	0.035	0.009	0.082	0.431
		0.70	0.62	4.75	1.75	0.75	3.57	
	23-50	0.043	0.018	0.199	0.030	0.009	0.070	0.379
		0.70	0.50	0.408	1.50	0.75	3.03	
	50-97	0.040	0.013	0.186	0.032	0.004	0.067	0.356
	50 57	0.65	0.37	3.87	1.62	0.38	2.89	0.550
75	97-125	0.046	0.018	0.170	0.027	0.004	0.070	0.349
	57-125	0.75	0.50	3.54	1.37	0.38	3.04	0.547
	125-168	0.043	0.013	0.155	0.020	0.006	0.064	0.318
	125-108	0.70	0.37	3.23	1.00	0.50	2.80	0.518
		0.049	0.018	0.166				
	0-25 25-50	0.80	0.50	3.45				0.497
		0.046	0.013	0.150				
		0.75	0.37	3.12				0.450
9		0.049	0.022	0.133				
	50-100	0.80	0.62	2.78				0.400
		0.046	0.018	0.123				
	100-150	0.75	0.50	2.57				0.370
		0.043	0.018	0.175				
	0-25	0.70	0.50	3.64				0.525
		0.046	0.018	0.140				
	25-50	0.75	0.50	2.91				0.418
74		0.046	0.013	0.112				
	50-100	0.75	0.37	2.32				0.335
		0.049	0.013	0.101				
	100-150	0.80	0.37	2.10				0.302
		0.043	0.022	0.172				
	0-25	0.70	0.62	3.57				0.515
		0.046	0.018	0.157				
	25-50	0.75	0.50	3.26				0.470
6		0.040	0.020	0.163				
	50-100	0.65	0.020	3.40				0.490
		0.046	0.75	0.129				
	100-150							0.386
	0-25	0.75	0.50	2.68				0.602
26	25-50							0.550
	50-100							0.490

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
28 25:0 m <td></td>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$30 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	i -
30 48-89 0.65 0.62 2.06 0.75 0.25 2.33 0.245 80.122 0.043 0.027 0.112 0.017 0.003 0.062 0.378	
0.65 0.62 2.06 0.75 0.25 2.33 0.043 0.027 0.112 0.017 0.003 0.062 0.378	
0.043 0.027 0.112 0.017 0.003 0.062	
0.0779	
	ł.
0.70 0.75 2.33 0.87 0.25 2.66 0.278	
0.043 0.018 0.120 0.015 0.003 0.061	
	i
0.043 0.027 0.128 0.020 0.004 0.063	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0.046 0.022 0.135 0.020 0.006 0.062	
0.75 0.62 2.81 1.00 0.50 2.68	
0.046 0.018 0.146 0.025 0.004 0.061	
	r
0.043 0.013 0.125 0.022 0.003 0.053	
91-122 0.70 0.37 2.60 1.12 0.25 2.30 ^{0.275}	
0.043 0.018 0.118 0.020 0.003 0.055	
0.70 0.50 2.40 1.00 0.25 2.41	

			0.049	0.018	0.094			
	0-25		0.80	0.50	1.96			0.282
			0.046	0.018	0.101			
	25-50							0.304
35			0.75	0.50	2.11			
	50-100		0.043	0.018	0.087			0.262
	30-100		0.80	0.50	1.82			0.202
			0.043	0.013	0.078			
	100-150		0.80	0.37	1.63			0.235
			0.043	0.022	0.150			
	0-25							0.450
			0.70	0.62	3.12			
	25.50		0.046	0.018	0.107			0.220
	25-50		0.75	0.50	2.22			0.320
61			0.040	0.018	0.090			
	50-100		0.65	0.50	1.87			0.270
			0.043	0.018	0.077			
	100-150							0.230
			0.70	0.50	1.60			
	0-25							 0.410
31	25-50 50-100							0.410 0.320
	0-25							0.260
67	25-50							0.250
	50-100	1:-1:4	(0.245
	 Heavy clay 	ey, light gray-me	0.040	0.027	0.138			
	0-25							0.415
			0.65	0.75	2.88	_		
	25-50		0.043	0.022	0.158			0.475
			0.70	0.62	3.30			0.475
45			0.046	0.022	0.184			
	50-100		0.75	0.62	3.83			0.552
			0.046	0.013	0.176			
	100-150							0.528
			0.75	0.37	3.66			
	0-25		0.043	0.018	0.177			0.530
	0-23		0.70	0.50	3.68			0.550
			0.046	0.013	0.143			
	25-50		0.75	0.37	2.98			0.425
66			0.046	0.018	0.127			
	50-100							0.382
			0.75	0.50	2.65			
	100-150		0.046	0.018	0.117			0.350
	100-150		0.75	0.50	2.43			0.550
	0-25							0.425
32	25-50							0.375
	50-100 0-25							 0.402 0.165
33	25-50					1		0.186
	50-100							0.175
34	0-25 25-50							0.612 0.528
54	25-50 50-100							0.528
	0-25							 0.365
44	25-50							0.320
	50-100 0-25							0.440 0.475
46	25-50							0.386
	50-100							0.245
	0-25							0.582
60	25-50 50-100							 0.500 0.528
<u> </u>	50-100		I			1	1	 0.520

Table 9: II. Full, brief water abso	rption and dry residu	e of weakly saline	soils analysis results	(absolute dry soil, in% eq)
Tuble ?? In Tun, oner water acco	peron and ary reprac	at or meaning barnine	00110 analy 010 100 and	(ueserate ary sen, m, eq)

		Anions				Cation	ıs			
Cut N0	Depth in cm							Na +	Dry Residue %-with,	
	.1	CO ₃	HCO ₃	CL	SO_4	Ca	Mg	The difference		
								according to		
1	2	3	4	5	6	7	8	9	10	
7) Light cla	ay, light gray-meadow	(chlorina	ted-sulfate)							
	0-25								0.707	
8	25-50								0.65	
	50-100								0.685	
	0-25								0.557	
9	25-50								0.5	
	50-100								0.39	
	0-25								0.593	
11	25-50								0.635	
	50-100								0.48	
	0-25								0.55	
23	25-50								0.49	
	50-100								0.386	
8) Heavy c	layey, light gray-grass	(chlorina	ted-sulfate)							
	0-25								0.57	
62	25-50								0.44	
	50-100								0.41	
	0-25								0.62	
64	25-50								0.51	
	50-100								0.325	

REFERENCES

- Aliev G.A. Soils of the Greater Caucasus within the Azerbaijan SSR., Baku «Elm», 1978, 157 p.
- Aliev BH, Aliev ZH Aliev IN Problems of erosion in Azerbaijan and ways to solve it. Publishing house Ziya-CPI «Nurlan» .Baku.2000 212p
- Babaev M.P., A.M. Djafarov, etc. The Modern Wounded Cover of the Greater Caucasus, Baku, 2017, 344 p. (in Azeri). Biodiversity and climate diversity. SVD, UNEP, 2007.http: «www.cbd.int/doc/ bioday/2007/ibd-2007-booklet-01-ru.pdf»
- 4. Vernadsky VI Works on the general history of science [Text] / VI. Vernadsky. Moscow: Nauka, 1908.
- 5. Mamedov G.Sh.Land reform in Azerbaijan: legal and scientificenvironmental issues.Baku,2000, 371 p.
- 6. Mamedov RG Agrophysical characteristics of soils near the Araxian strip. Baku, 1970, 321 p.
- Flint V.E. and others Conservation and restoration of biodiversity. Moscow: Izd. Scientific and educational-methodical center, 2002, 282 p.9. Shykhlinsky E.M. - The climate of Azerbaijan., Baku, 1968, 341 p.